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Abstract
Complex variable hypervirial perturbation theory is applied to the case of
oscillator and Coulomb potentials perturbed by a single term potential of the
form V xn or V rn, respectively. The trial calculations reported show that this
approach can produce accurate complex energies for resonant states via a simple
and speedy calculation and can also be useful in studies of PT symmetry and
tunnelling resonance effects.

PACS numbers: 03.65.Sq, 31.15.Md

The present note is essentially an addendum to a recent survey of the use of standard hypervirial
perturbation theory (HVPT) to calculate bound state energy levels and expectation values for
several interesting potentials [1]. After completing that work the authors carried out several
trial calculations in which the numerical parameters in the theory were allowed to take complex
values. The numerical results were surprisingly good and this note sets out some of them,
with the intention of encouraging other workers to apply and extend the simple techniques
which are described here. The calculation is a numerical ‘direct’ one; previous authors using
perturbation methods for resonant state calculations [2, 3] have applied various ancillary
mathematical techniques to derive the imaginary part of the energy from the coefficients of
the traditional energy series, which usually needs to be taken to a very high order or to be
expressed in an algebraic form so that the nth order term in the energy series appears as
a polynomial in the unperturbed energy. Several authors have used the principle that the
complex virial theorem should be obeyed in resonant state calculations [4–6]; here the whole
system of complex hypervirial relations is taken to be valid. Comparison with the few very
high precision results available (e.g. those of [7]) indicates that the complex HVPT actually
produces the complex energies of Siegert states. The results of this note were obtained using
ordinary double precision and taking the energy series up to between 50th and 80th orders.
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Experience with real variable HVPT suggests that the most favourable case to treat will
probably be that of an x4 perturbation of a harmonic oscillator. For renormalized HVPT the
Hamiltonian is written as

−αD2 + Ux2 + λV4x
4 = −αD2 + Wx2 + λ(V4x

4 + V2x
2) (1)

with the numerical values chosen so that U = W + V2 and with the value of λ always set at 1
in numerical computation, so as to avoid the use of factors λn when summing the perturbation
series. The novelty here is to let U,W,V2 and V4 be complex. The details of the calculation are
set out in [1] and in many previous works in the existing literature, except that complex rather
than real arithmetic has to be used. Programming languages such as Fortran allow directly
for complex arithmetic but it is quite straightforward to write paired real and imaginary part
equations to replace each equation appearing in the standard real variable HVPT. Apart from
standard multiplication and division, the only new complex variable operation required is that
of square root extraction, since the unperturbed energy E(0) of the nth energy level will be
equal to (2n + 1)β, where β is the complex square root of Wα.

The resulting program is a dual-purpose one. With V2 and V4 positive we have the usual
renormalized HVPT, giving accurate bound state energy levels [1]. If, however, V4 is small
and negative then the use of real U and W values gives real energies which appear to fall off in
accuracy as the modulus of V4 increases; they are the estimates of the real part of the energy
of a resonant state. Making W = WR + iWI a complex number leads to real and complex
parts of the energy which both achieve reasonable precision; this precision can be increased
by varying W to find an optimum value (taken to be that at which the Wynn epsilon analysis
of the partial sums gives the greatest number of converged decimal digits ). It turns out that
finding the optimum W is hardly any problem when the imaginary part of the energy is greater
than about 10−10. As the results of the tables show, it suffices to fix WR at the ‘unperturbed’
value and to vary WI in steps of roughly 10−1; even keeping WI fixed gives reasonable results
(see table 4) because the optima are extremely broad.

Numerical experiment showed that much more accurate results can be obtained by also
using a complex variable form of the Wynn epsilon algorithm subroutine which analyses
the partial sums of the energy series. Accuracy is lost if the standard real variable epsilon
algorithm is used to treat the real and complex sums separately. The optimum W value as
found by studying the epsilon algorithm results is often somewhat different from the W value
at which the sequence of complex partial sums appears to be showing the best convergence
‘by eye’.

Table 1 shows some typical results for the case of the perturbation −λx4. They
compare favourably with most of the previous results arising from methods which are
considerably more complicated [2, 6–11, 13]. For the special case λ = 1 the result
E = (0.747 75, 0.609 98) was quoted in [9]; complex HVPT with the choice W = (1, 9)

gives E = (0.747 747 833 5629, 0.609 980 500 214). Table 2 shows some results near the λ

values at which the real part of the resonance energy for the first three states has a minimum.
These minima were barely visible in the low precision result of [8] but were also detected
by workers using other methods [2, 10]. Fernandez and Tipping [2] pointed out that the real
variable results of [10] for ER are in error; the complex HVPT method indicates that for the
lowest resonance the ER results of [10] are low by roughly one quarter of EI at each λ value.
Table 3 shows some results for the case of a −λx3 perturbed oscillator. For this case the results
are not as accurate as those for the −λx4 perturbation but are better than most available ones
[12–15], except for the very accurate results of [5] and a few of those given in [6]. The use
of a complex W value in the HVPT appears to be roughly equivalent to the use of a complex
rotated coordinate in the usual matrix or finite difference approaches but leads to a simple and
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Table 1. The lowest four resonant state energies for H = −D2 +x2 −λx4. The roughly optimized
W value has WR = 1, WI = 0.25 + 25λ. A perturbation order of 78 was used. Only the n = 0
results of [7] is more accurate than those given here.

n λ ER EI

0 0.02 0.984 427 669 765 3 5.1(−14)
0.04 0.967 451 235 237 0 5.965 307 36(−7)
0.06 0.948 329 772 671 7 1.119 115 271(−4)
0.08 0.925 942 461 073 1 1.544 022 1243(−3)
0.10 0.900 672 904 092 0 6.693 280 8758(−3)

1 0.02 2.920 282 161 311 84 1.799 685 13(−11)
0.04 2.827 102 639 47 8.902 964 508(−5)
0.06 2.706 684 874 05 9.058 977 9587(−3)
0.08 2.567 498 565 886 6.063 364 402(−2)
0.10 2.448 334 165 653 1.531 950 6041(−1)

2 0.02 4.786 335 047 926 5 2.842 626 27(−9)
0.04 4.504 482 756 44 4.670 427 977(−3)
0.06 4.124 540 6962 1.414 222 438(−1)
0.08 3.841 131 4978 4.320 962 285(−1)
0.10 3.675 255 7656 7.440 468 74(−1)

3 0.02 6.573 552 560 950 5 2.632 2967(−7)
0.04 5.909 093 7896 8.001 416 68(−2)
0.06 5.286 435 690 6.382 303 70(−1)
0.08 5.015 750 0386 1.269 209 0415(0)
0.10 4.913 363 9161 1.808 334 6908(0)

Table 2. The complex energy values around the ER minimum for the lowest three states with
H = −D2 + x2 − λx4. The fixed choice WR = 1,WI = 4 sufficed for all results, with a
perturbation order of 78. The data show that the minima are very close to the λ values 0.537 75,
0.308 15 and 0.182 65.

ER (n = 0) ER (n = 1) ER (n = 2)
λ (0.722 54 ) λ (2.151 26) λ (3.5019)

0.5375 731 388 0.3079 028 572 0.1824 07 223
0.5376 730 658 0.3080 019 690 0.1825 06 749
0.5377 730 410 0.3081 015 257 0.1826 06 518
0.5378 730 644 0.3082 015 269 0.1827 06 532
0.5379 731 360 0.3083 019 720 0.1828 06 789

speedy calculation. We discovered that in table 1 of [12] the n = 2 result for λ = 0.034 is
omitted, so that the quoted energies for the states n = 2 and 3 actually refer to the states n = 3
and 4.

The complex HVPT has also been tested for the case of the perturbations λr and λr2

acting on the unperturbed Coulomb Hamiltonian. For this case the renormalized Hamiltonian
takes the form

−αD2 − Zr−1 + λVprp = −αD2 − Z0r
−1 + λ(Vprp + V−1r

−1). (2)

The basic equations for the calculation were set out in [1]; all that is required is to set
out the relevant equations with a real and imaginary part pair of equations to replace each real
variable equation in the standard HVPT formalism. The λr2 perturbation with small positive
λ is of interest in the theory of the quadratic Zeeman effect, since for the 1s state the full
magnetic perturbation λ(x2 + y2) can be replaced by (2/3)λr2 to calculate the energy level
displacement caused by the magnetic mixing with all higher s type bound state and continuum
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Table 3. The lowest four resonant states for H = −D2 + 0.25x2 −λx3, for the three λ values used
in [6, 12, 14]. The fixed values WR = 0.25,WI = 0.3 sufficed to obtain greater accuracy than
previous results, except for two n = 0 results in [6] and the results of [5].

λ n ER EI

0.03 0 0.489 194 714 05 5.537 1 (−8)
1 1.422 922 457 4.094 1(−5)
2 2.250 199 8 7.406 4(−3)
3 2.923 360 1.391 42(−1)
4 3.618 943 4.688 2(−1)

0.034 0 0.485 679 371 77 2.866 98 (−6)
1 1.391 574 84 1.341 93(−3)
2 2.132 136 6.876 23(−2)
3 2.817 874 3.639 74(−1)
4 3.586 675 7.772 57(−1)

0.0481 0 0.465 163 672 4 2.262 724(−3)
1 1.243 100 3 1.132 580(−1)
2 1.999 877 5.048 11(−1)
3 2.857 867 1.016 774(0)
4 3.778 681 1.592 917(0)

Table 4. The lowest resonant state energy for H = −0.5D2 − 1/r − λrp . For P = 1, the choice
Z0R = 1, Z0I = 0.3 + 5λ was used. For P = 2 both parts of Z0 were crudely held at the value 1.
The perturbation order used was low, 56 for P = 1 and 47 for P = 2. The results for P = 1 are
in accord with the highly accurate results of [25].

P λ ER EI

1 0.02 −0.530 663 983 531 828 2.781(−12)
0.04 −0.563 067 242 935 4 9.607 326 7(−6)
0.06 −0.598 479 496 219 7.974 050 0(−4)
0.08 −0.636 534 339 52 5.085 202 5(−3)
0.10 −0.674 574 135 7 1.346 928 83(−2)

2 0.01 −0.535 047 13 2.223 438(−3)
0.02 −0.571 711 8 1.691 49(−2)
0.03 −0.601 622 3.731 7(−2)
0.04 −0.626 370 5.897 7(−2)
0.05 −0.647 538 8.062 8(−2)

basis functions [1]. For small positive λ HVPT can thus be used to obtain fairly accurate
energy levels for the hydrogen atom in a weak magnetic field. The results for small negative λ

values, however, will lead to the complex energy of a resonant state. A search of the literature
shows that the case of positive λ has been treated many times. References [16–18] gave a few
results for negative λ but the most accurate results for negative λ are those of [25] for r and
those of [26] for r2. To the smaller number of digits shown our results for the case −λr agree
with the highly accurate ones of [25]; our results for −λr2 do not cover the same range as
those of [26]. Table 4 shows a selection of complex HVPT results.

Complex HVPT has also been applied to a few PT symmetric potentials. The numerical
results in [19] gave the real energy 0.594 92 for the lowest eigenvalue of the Hamiltonian
−D2 + 0.25x2 + iλx3 with λ = 0.125. Setting W = 0.75 in the complex HVPT gives a real
energy of 0.594 915 222 77. In [20] the Hamiltonian −D2 +ix3 +λx2 was treated, with λ as the
perturbation parameter, leading (at λ = 10) to the lowest energy 3.169 096 16. Using complex
HVPT with the ix3 as the perturbation and W = 5 gives an energy of 3.169 096 167 272 528.
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Complex HVPT also gives very accurate energies for the lowest few energy levels of the
Hamiltonian −D2 + x2 + ix3. Even for the extreme case H = −D2 + ix3 the choice W = 7.0
gives the energy 1.156 267, agreeing with [21]. As a further extreme test we computed
the real ground state energy for the Hamiltonian −D2 + x2 + 0.2ix3 using a complex W

value, W = (1, 0.2). The resulting energy had the correct real part 1.025 076 291 878 65
and an imaginary part which had been reduced to roughly 2 × 10−16 by the complex epsilon
algorithm.

For the case in which U is negative, corresponding to an unperturbed inverted oscillator,
complex HVPT based on an origin at x = 0 gives complex energies which apparently refer
to what are called tunnelling resonances [22, 23], or barrier resonances [3] in the literature.
For H = −D2 − 0.5x2 + λx4 Sergeev [22] gave the energy −0.064 750 96+i0.517 142 56
at λ = 0.1. Complex HVPT (with W = −1) gives the improved energy value
−0.064 750 956 687 + i0.517 142 561 6210 and also gives correctly i times this energy for
the complex rotated version H = −D2 + x2 − 0.1ix3 [3]. Real HVPT, when applied at
the potential minimum for a double well potential, gives the average of the lowest even and
odd real eigenvalues [1]. To obtain a real energy from the complex HVPT results based on
x = 0 requires the use of special algebraic approximants which can use the coefficients of the
perturbation series to reveal the real energies which are situated on the second Riemann sheet
[3, 22].

The selection of results given in this short note is intended to alert journal readers to the
potential value of HVPT for the class of problems treated here. There is clearly a further
range of problems which should be approached to test the range of applicability of a complex
variable modification of standard perturbational techniques. The obvious next problems to
look at are those which involve a smooth analytic potential with quickly convergent power
series. A survey of the literature for such problems revealed no application of HVPT in
complex form, although Germann and Kais [24] did apply a complex variable form of 1/N
perturbation theory for the potential r2 e−r and referred to other works which had also done
so. It should also be possible to construct a complex variable form of the general moment
perturbation theory which was set out in [27]; non-separable problems would then be treatable.
It will also be of interest to see how the complex HVPT handles cases which are amenable to
treatment by the powerful method of algebraic approximants [28].
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